Nähere Hinweise zur Forschungsaufgabe: Ein mysteriöser geometrischer Ort (Frage 4)

Niveau: Schwierig (Obere Gymnasialklassen und Studienanfänger)

Dies ist ein Beispiel eines alternativen Zugangs zum Mathematiklernen. Aufgaben in der Art dieser Artikelserie (auch zu einfacheren Themen) finden sich in diesem Buch zum mathematischen Forschen und Selber-Entdecken.Weitere Informationen hier.

Diese letzte Folge ist ein Anhang zu einer kleinen „mathematischen Entdeckungsreise“, die mit dieser Forschungsaufgabe. anfing. Ich empfehle, mit dem Lesen (und Forschen) dort zu beginnen, um besser zu verstehen, wovon wir hier sprechen.


Probleme, die unterschiedliche Gebiete der Mathematik miteinander verbinden, haben einen besonderen Reiz. Das vorliegende ist von dieser Art. Wir haben mit einer Geometrieaufgabe angefangen, mussten zusätzlich die Trigonometrie beiziehen, und landeten dann bei einer besonderen Abbildung, der Inversion, die man auch analytisch untersuchen kann. In diesem Zusammenhang habe ich in der letzten Folge eine Zusatzfrage gestellt (Frage 4), die in der ursprünglichen Problemstellung nicht vorkam: Beweise (analytisch), dass die Inversion jedes Kreises, der nicht durch O geht, ein Kreis ist. Hier nun einige Hinweise dazu, für jene, die es versucht haben und irgendwo auf dem Weg steckengeblieben sind, oder schon den Einstieg nicht fanden.

Stelle die Situation in einem Koordinatensystem dar. Wähle die praktischsten Werte für O und R. Untersuche die Gleichung eines Kreises, und die Gleichung der Inversion dieses Kreises. Kannst du beweisen, dass die Gleichung der Inversion ebenfalls einen Kreis beschreibt?

Du kannst es sogleich auf deine eigene Art versuchen, oder auch dem folgenden „Rezept“ folgen:

Ich habe O(0;0) und R=1 gewählt. Der Kreis, der das „Urbild“ ist, soll das Zentrum (p;0) haben und einen Radius r. Sein Zentrum liegt also auf der x-Achse.
Wir dürfen diese Einschränkungen vornehmen, ohne dass der Beweis an Allgemeingültigkeit verliert, denn die geometrischen Eigenschaften der Inversion bleiben bei Streckung und Drehung erhalten. Somit können alle anderen Situationen auf die hier gewählte zurückgeführt werden.
Wir definieren ausserdem, dass p und r nicht gleich sind. Denn sonst ginge die Kreislinie durch O, und das ist der Fall, den wir bereits mit den Fragen 1 bis 3 untersucht haben. (Man kann natürlich auch diesen Fall analytisch untersuchen.)

Die Gleichung unseres Kreises lautet also:

(xp)2 + y2 = r2

Wenn wir nun einen Punkt A(x; y) haben, der diese Gleichung erfüllt (also auf unserem Kreis liegt), und wir wenden die Inversion an, was sind dann die Koordinaten A'(x‘; y‘) des Abbilds von A?
Erinnere dich, dass A‘ auf der Verbindungsgeraden AO liegt; und ausserdem gilt: AO·A’O = R2.

Du erhältst dann je einen Ausdruck für x‘ und für y‘; aber diese Ausdrücke enthalten noch die „alten“ Koordinaten x und y. Es geht jetzt also darum, aus diesen beiden Gleichungen x und y zu eliminieren, damit wir die Gleichung des ganzen „invertierten Kreises“ erhalten. Diese Gleichung sollte als Variabeln nur noch x‘ und y‘ enthalten (sowie die Parameter p und r).
D.h. zusammen mit der obigen Gleichung des Urbilds haben wir nun ein System von drei Gleichungen. Wir sollten also daraus zwei Variabeln (x und y) eliminieren können und dann eine einzige Gleichung haben.

Die algebraischen Umformungen während dieses Vorgangs können u.U. sehr kompliziert werden – oder je nachdem auch relativ einfach, wenn du es geschickt anpackst. Hier noch ein paar Tips dazu:

– Sei dir im Klaren darüber, worauf wir hinauswollen. Wir wollen beweisen, dass das Abbild ein Kreis ist. Das ist dann der Fall, wenn wir die Gleichung in die folgende Form bringen können:

(x‚ – a)2 + (y‚ – b)2 = s2

… wobei die Ausdrücke von a, b und s Konstanten sein müssen, d.h. sie dürfen nicht x‘ oder y‘ enthalten.
Wir können übrigens bereits voraussagen, dass b=0. Warum?

– Sowohl die Gleichung des Urbilds, als auch die voraussichtliche Gleichung des Abbilds, sind quadratisch. Daher die Empfehlung: Wenn möglich unterwegs kein unnötiges Wurzelziehen (und auch kein unnötiges Ausmultiplizieren)!

– Statt z.B. nach x und/oder nach y aufzulösen und diese Lösungen einzusetzen, wird die Sache evtl. einfacher, wenn wir direkt gewisse zusammengesetzte Ausdrücke ersetzen, z.B. x2 + y2, oder x/x‘. (Auf diese Weise bin ich auf einen Lösungsweg gekommen, in dem tatsächlich keine einzige Quadratwurzel vorkommt!)

Genug der Hinweise. Ich darf noch verraten, dass die Vermutung richtig ist: das Abbild ist tatsächlich ein Kreis. Aber nun bist du dran!

Du könntest dann zusätzlich untersuchen, was es für Kreise gibt, die auf sich selber abgebildet werden. (Abgesehen vom trivialen Fall des Inversionskreises selber, also des Kreises um O mit Radius R.) Was für Bedingungen müssen solche Kreise erfüllen?

Werbeanzeigen

Schlagwörter: , , ,


%d Bloggern gefällt das: